Step
*
2
1
1
of Lemma
streamless-implies-not-not-enum
1. T : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. alpha : ℕ ⟶ T
4. i : ℕ
5. j : ℕ
6. ¬(i = j ∈ ℕ)
7. (alpha i) = (alpha j) ∈ T
8. no_repeats(T;map(alpha;upto(1 + imax(i;j))))
⊢ False
BY
{ xxx(Unfold `no_repeats` -1
THEN (InstHyp [⌜i⌝;⌜j⌝] (-1)⋅ THENA (Auto THEN (RWO "imax_unfold" 0 THENA Auto) THEN AutoSplit))
THEN D -1)xxx }
1
1. T : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. alpha : ℕ ⟶ T
4. i : ℕ
5. j : ℕ
6. ¬(i = j ∈ ℕ)
7. (alpha i) = (alpha j) ∈ T
8. ∀[i@0,j@0:ℕ].
(¬(map(alpha;upto(1 + imax(i;j)))[i@0] = map(alpha;upto(1 + imax(i;j)))[j@0] ∈ T)) supposing
((¬(i@0 = j@0 ∈ ℕ)) and
j@0 < ||map(alpha;upto(1 + imax(i;j)))|| and
i@0 < ||map(alpha;upto(1 + imax(i;j)))||)
⊢ map(alpha;upto(1 + imax(i;j)))[i] = map(alpha;upto(1 + imax(i;j)))[j] ∈ T
Latex:
Latex:
1. T : Type
2. \mforall{}x,y:T. Dec(x = y)
3. alpha : \mBbbN{} {}\mrightarrow{} T
4. i : \mBbbN{}
5. j : \mBbbN{}
6. \mneg{}(i = j)
7. (alpha i) = (alpha j)
8. no\_repeats(T;map(alpha;upto(1 + imax(i;j))))
\mvdash{} False
By
Latex:
xxx(Unfold `no\_repeats` -1
THEN (InstHyp [\mkleeneopen{}i\mkleeneclose{};\mkleeneopen{}j\mkleeneclose{}] (-1)\mcdot{}
THENA (Auto THEN (RWO "imax\_unfold" 0 THENA Auto) THEN AutoSplit)
)
THEN D -1)xxx
Home
Index