Nuprl Lemma : tagged-val_wf2
∀[B:Type]. ∀[z:Atom]. ∀[x:z:B].  x.val ∈ B supposing x.tag = z ∈ Atom
Proof
Definitions occuring in Statement : 
tagged-val: x.val, 
tagged-tag: x.tag, 
tag-case: z:T, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
atom: Atom, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
tagged-tag: x.tag, 
pi1: fst(t), 
tag-case: z:T, 
tagged-val: x.val, 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bfalse: ff
Lemmas referenced : 
tag-case_wf, 
equal-wf-T-base, 
atom_subtype_base, 
eq_atom_wf, 
equal-wf-base, 
assert_wf, 
bnot_wf, 
not_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_atom, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
extract_by_obid, 
cumulativity, 
atomEquality, 
productElimination, 
applyEquality, 
universeEquality, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
unionElimination, 
instantiate, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
impliesFunctionality
Latex:
\mforall{}[B:Type].  \mforall{}[z:Atom].  \mforall{}[x:z:B].    x.val  \mmember{}  B  supposing  x.tag  =  z
 Date html generated: 
2018_05_21-PM-08_42_13
 Last ObjectModification: 
2017_07_26-PM-06_06_05
Theory : general
Home
Index