Nuprl Lemma : decidable__equal_free-dl
∀[T:Type]. ∀eq:EqDecider(T). ∀x,y:Point(free-dist-lattice(T; eq)). Dec(x = y ∈ Point(free-dist-lattice(T; eq)))
Proof
Definitions occuring in Statement :
free-dist-lattice: free-dist-lattice(T; eq)
,
lattice-point: Point(l)
,
deq: EqDecider(T)
,
decidable: Dec(P)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
so_apply: x[s]
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
guard: {T}
,
top: Top
Lemmas referenced :
deq-implies,
lattice-point_wf,
free-dist-lattice_wf,
subtype_rel_set,
bounded-lattice-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
bounded-lattice-axioms_wf,
uall_wf,
equal_wf,
lattice-meet_wf,
lattice-join_wf,
deq_wf,
free-dl-point,
deq-fset_wf,
fset_wf,
strong-subtype-deq-subtype,
assert_wf,
fset-antichain_wf,
strong-subtype-set2
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
hypothesis,
applyEquality,
sqequalRule,
instantiate,
lambdaEquality,
productEquality,
universeEquality,
because_Cache,
independent_isectElimination,
independent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
introduction,
setEquality
Latex:
\mforall{}[T:Type]. \mforall{}eq:EqDecider(T). \mforall{}x,y:Point(free-dist-lattice(T; eq)). Dec(x = y)
Date html generated:
2020_05_20-AM-08_45_08
Last ObjectModification:
2015_12_28-PM-02_00_16
Theory : lattices
Home
Index