Nuprl Lemma : cons_succ
∀[T:Type]
  ∀l:T List
    ∀[P:T ⟶ ℙ]
      ∀a,x:T.
        (y = succ(x) in [a / l]
        
⇒ P[y]
        
⇒ ((P[hd(l)]) supposing (0 < ||l|| and (x = a ∈ T)) ∧ y = succ(x) in l
⇒ P[y] supposing ¬(x = a ∈ T)))
Proof
Definitions occuring in Statement : 
l_succ: l_succ, 
length: ||as||
, 
hd: hd(l)
, 
cons: [a / b]
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
l_succ: l_succ, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
nat: ℕ
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
less_than: a < b
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
member-less_than, 
length_wf, 
less_than_wf, 
select_wf, 
length_of_cons_lemma, 
istype-void, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
nat_wf, 
not_wf, 
equal_wf, 
cons_wf, 
add-is-int-iff, 
false_wf, 
istype-universe, 
list_wf, 
list-cases, 
length_of_nil_lemma, 
istype-false, 
product_subtype_list, 
le_wf, 
stuck-spread, 
istype-base, 
reduce_hd_cons_lemma, 
select-cons-tl, 
add-subtract-cancel, 
select_cons_tl, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
independent_isectElimination, 
universeIsType, 
equalityIsType1, 
inhabitedIsType, 
independent_pairFormation, 
lambdaEquality_alt, 
dependent_functionElimination, 
voidElimination, 
functionIsTypeImplies, 
setElimination, 
because_Cache, 
isect_memberEquality_alt, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
imageElimination, 
productElimination, 
addEquality, 
functionIsType, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
universeEquality, 
dependent_set_memberEquality_alt, 
hypothesis_subsumption, 
instantiate
Latex:
\mforall{}[T:Type]
    \mforall{}l:T  List
        \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}]
            \mforall{}a,x:T.
                (y  =  succ(x)  in  [a  /  l]
                {}\mRightarrow{}  P[y]
                {}\mRightarrow{}  ((P[hd(l)])  supposing  (0  <  ||l||  and  (x  =  a))  \mwedge{}  y  =  succ(x)  in  l{}\mRightarrow{}  P[y]  supposing  \mneg{}(x  =  a\000C)))
Date html generated:
2019_10_15-AM-10_53_20
Last ObjectModification:
2018_10_09-AM-09_54_24
Theory : list!
Home
Index