Nuprl Lemma : find_property

[T:Type]
  ∀P:T ⟶ 𝔹. ∀as:T List. ∀d:T.  (((first a ∈ as s.t. P[a] else d) ∈ as) ∨ ((first a ∈ as s.t. P[a] else d) d ∈ T))


Proof




Definitions occuring in Statement :  find: (first x ∈ as s.t. P[x] else d) l_member: (x ∈ l) list: List bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] or: P ∨ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T so_apply: x[s] all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] uall: [x:A]. B[x] find: (first x ∈ as s.t. P[x] else d) so_lambda: λ2x.t[x] implies:  Q true: True guard: {T} or: P ∨ Q prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  bool_wf list_ind_cons_lemma equal_wf assert_wf bnot_wf not_wf list_induction all_wf or_wf l_member_wf find_wf list_wf filter_nil_lemma list_ind_nil_lemma nil_wf filter_cons_lemma eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot cons_member l_member_subtype cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity applyEquality hypothesisEquality cut introduction extract_by_obid hypothesis equalityTransitivity equalitySymmetry sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality isectElimination because_Cache isect_memberFormation lambdaFormation lambdaEquality cumulativity functionExtensionality independent_functionElimination natural_numberEquality inrFormation rename unionElimination equalityElimination productElimination independent_isectElimination functionEquality universeEquality inlFormation

Latex:
\mforall{}[T:Type]
    \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}as:T  List.  \mforall{}d:T.
        (((first  a  \mmember{}  as  s.t.  P[a]  else  d)  \mmember{}  as)  \mvee{}  ((first  a  \mmember{}  as  s.t.  P[a]  else  d)  =  d))



Date html generated: 2017_10_01-AM-08_34_16
Last ObjectModification: 2017_07_26-PM-04_25_25

Theory : list!


Home Index