Nuprl Lemma : map_equal2
∀[T,T':Type]. ∀[a:T List]. ∀[f,g:T ⟶ T'].
  map(f;a) = map(g;a) ∈ (T' List) supposing ∀x:T. ((x ∈ a) 
⇒ ((f x) = (g x) ∈ T'))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
all_wf, 
l_member_wf, 
equal_wf, 
list_wf, 
map_equal, 
squash_wf, 
true_wf, 
select_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
select_member, 
lelt_wf, 
length_wf, 
subtype_rel_self, 
iff_weakening_equal, 
less_than_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
universeEquality, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaFormation, 
imageElimination, 
dependent_functionElimination, 
cumulativity, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productElimination
Latex:
\mforall{}[T,T':Type].  \mforall{}[a:T  List].  \mforall{}[f,g:T  {}\mrightarrow{}  T'].
    map(f;a)  =  map(g;a)  supposing  \mforall{}x:T.  ((x  \mmember{}  a)  {}\mRightarrow{}  ((f  x)  =  (g  x)))
Date html generated:
2018_05_21-PM-06_20_19
Last ObjectModification:
2018_05_19-PM-05_32_25
Theory : list!
Home
Index