Nuprl Lemma : map_equal2

[T,T':Type]. ∀[a:T List]. ∀[f,g:T ⟶ T'].
  map(f;a) map(g;a) ∈ (T' List) supposing ∀x:T. ((x ∈ a)  ((f x) (g x) ∈ T'))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) map: map(f;as) list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] uimplies: supposing a all: x:A. B[x] squash: T nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  all_wf l_member_wf equal_wf list_wf map_equal squash_wf true_wf select_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf select_member lelt_wf length_wf subtype_rel_self iff_weakening_equal less_than_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality functionEquality hypothesis applyEquality because_Cache universeEquality isect_memberFormation isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry independent_isectElimination lambdaFormation imageElimination dependent_functionElimination cumulativity setElimination rename natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation dependent_set_memberEquality functionExtensionality imageMemberEquality baseClosed instantiate productElimination

Latex:
\mforall{}[T,T':Type].  \mforall{}[a:T  List].  \mforall{}[f,g:T  {}\mrightarrow{}  T'].
    map(f;a)  =  map(g;a)  supposing  \mforall{}x:T.  ((x  \mmember{}  a)  {}\mRightarrow{}  ((f  x)  =  (g  x)))



Date html generated: 2018_05_21-PM-06_20_19
Last ObjectModification: 2018_05_19-PM-05_32_25

Theory : list!


Home Index