Nuprl Lemma : map_equal

[T,T':Type]. ∀[a:T List]. ∀[f,g:T ⟶ T'].
  map(f;a) map(g;a) ∈ (T' List) supposing ∀i:ℕ(i < ||a||  ((f a[i]) (g a[i]) ∈ T'))


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| map: map(f;as) list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] and: P ∧ Q top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  uimplies: supposing a nat: prop: implies:  Q so_lambda: λ2x.t[x] uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties select_wf equal_wf length_wf less_than_wf nat_wf all_wf map_wf list_extensionality map_length istype-less_than istype-nat full-omega-unsat istype-int istype-void istype-le iff_weakening_equal squash_wf true_wf subtype_rel_self istype-universe map_select
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality isect_memberFormation universeEquality computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination natural_numberEquality dependent_functionElimination independent_isectElimination functionExtensionality applyEquality hypothesisEquality cumulativity because_Cache rename setElimination functionEquality lambdaEquality sqequalRule hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution Error :lambdaFormation_alt,  Error :dependent_set_memberEquality_alt,  approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :universeIsType,  Error :productIsType,  imageElimination imageMemberEquality baseClosed productElimination Error :inhabitedIsType,  instantiate

Latex:
\mforall{}[T,T':Type].  \mforall{}[a:T  List].  \mforall{}[f,g:T  {}\mrightarrow{}  T'].
    map(f;a)  =  map(g;a)  supposing  \mforall{}i:\mBbbN{}.  (i  <  ||a||  {}\mRightarrow{}  ((f  a[i])  =  (g  a[i])))



Date html generated: 2019_06_20-PM-01_45_16
Last ObjectModification: 2019_01_10-PM-08_46_14

Theory : list_1


Home Index