Nuprl Lemma : map_equal
∀[T,T':Type]. ∀[a:T List]. ∀[f,g:T ⟶ T'].
  map(f;a) = map(g;a) ∈ (T' List) supposing ∀i:ℕ. (i < ||a|| 
⇒ ((f a[i]) = (g a[i]) ∈ T'))
Proof
Definitions occuring in Statement : 
select: L[n]
, 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
and: P ∧ Q
, 
top: Top
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
nat: ℕ
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
select_wf, 
equal_wf, 
length_wf, 
less_than_wf, 
nat_wf, 
all_wf, 
map_wf, 
list_extensionality, 
map_length, 
istype-less_than, 
istype-nat, 
full-omega-unsat, 
istype-int, 
istype-void, 
istype-le, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
subtype_rel_self, 
istype-universe, 
map_select
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
isect_memberFormation, 
universeEquality, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
natural_numberEquality, 
dependent_functionElimination, 
independent_isectElimination, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
because_Cache, 
rename, 
setElimination, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
Error :lambdaFormation_alt, 
Error :dependent_set_memberEquality_alt, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
Error :productIsType, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
Error :inhabitedIsType, 
instantiate
Latex:
\mforall{}[T,T':Type].  \mforall{}[a:T  List].  \mforall{}[f,g:T  {}\mrightarrow{}  T'].
    map(f;a)  =  map(g;a)  supposing  \mforall{}i:\mBbbN{}.  (i  <  ||a||  {}\mRightarrow{}  ((f  a[i])  =  (g  a[i])))
Date html generated:
2019_06_20-PM-01_45_16
Last ObjectModification:
2019_01_10-PM-08_46_14
Theory : list_1
Home
Index