Nuprl Lemma : map_select

[A,B:Type]. ∀[f:A ⟶ B]. ∀[as:A List]. ∀[n:ℕ||as||].  (map(f;as)[n] (f as[n]) ∈ B)


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| map: map(f;as) list: List int_seg: {i..j-} uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T top: Top so_apply: x[s] all: x:A. B[x] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: false: False guard: {T} decidable: Dec(P) or: P ∨ Q true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q not: ¬A uiff: uiff(P;Q) le: A ≤ B less_than': less_than'(a;b) subtract: m nat:
Lemmas referenced :  int_seg_wf length_wf list_wf list_induction all_wf equal_wf select_wf map_wf sq_stable__le map-length length_of_nil_lemma map_nil_lemma stuck-spread base_wf length_of_cons_lemma map_cons_lemma less_than_transitivity1 less_than_irreflexivity decidable__int_equal le_weakening squash_wf true_wf select_cons_hd iff_weakening_equal decidable__lt false_wf not-lt-2 not-equal-2 add_functionality_wrt_le zero-add add-zero le-add-cancel condition-implies-le add-commutes minus-add minus-zero le_wf map_length_nat nat_wf decidable__le not-le-2 less-iff-le add-associates minus-one-mul add-swap minus-one-mul-top le-add-cancel2 subtract_wf minus-minus lelt_wf select_cons_tl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis because_Cache functionEquality universeEquality isect_memberFormation sqequalRule isect_memberEquality axiomEquality lambdaEquality functionExtensionality applyEquality setElimination rename independent_isectElimination independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination voidElimination voidEquality dependent_functionElimination lambdaFormation addEquality unionElimination equalityTransitivity equalitySymmetry independent_pairFormation minusEquality intEquality dependent_set_memberEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as:A  List].  \mforall{}[n:\mBbbN{}||as||].    (map(f;as)[n]  =  (f  as[n]))



Date html generated: 2017_04_14-AM-08_38_49
Last ObjectModification: 2017_02_27-PM-03_29_52

Theory : list_0


Home Index