Nuprl Lemma : map_equal3
∀[T,T':Type]. ∀[a:T List+]. ∀[f,g:T ⟶ T'].
  map(f;a) = map(g;a) ∈ T' List+ supposing ∀x:T. ((x ∈ a) 
⇒ ((f x) = (g x) ∈ T'))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
listp: A List+
, 
map: map(f;as)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
listp: A List+
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
not: ¬A
, 
false: False
, 
cons: [a / b]
, 
guard: {T}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
l_member_wf, 
equal_wf, 
all_wf, 
listp_wf, 
map-length, 
listp_properties, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
length_wf, 
map_equal2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
functionIsType, 
universeIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
lambdaEquality, 
functionEquality, 
inhabitedIsType, 
because_Cache, 
universeEquality, 
isect_memberFormation_alt, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
unionElimination, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
lambdaFormation, 
addEquality, 
independent_pairFormation, 
independent_isectElimination, 
intEquality, 
minusEquality
Latex:
\mforall{}[T,T':Type].  \mforall{}[a:T  List\msupplus{}].  \mforall{}[f,g:T  {}\mrightarrow{}  T'].
    map(f;a)  =  map(g;a)  supposing  \mforall{}x:T.  ((x  \mmember{}  a)  {}\mRightarrow{}  ((f  x)  =  (g  x)))
Date html generated:
2019_10_15-AM-10_53_23
Last ObjectModification:
2018_09_27-AM-10_02_48
Theory : list!
Home
Index