Nuprl Lemma : map_equal3

[T,T':Type]. ∀[a:T List+]. ∀[f,g:T ⟶ T'].
  map(f;a) map(g;a) ∈ T' List+ supposing ∀x:T. ((x ∈ a)  ((f x) (g x) ∈ T'))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) listp: List+ map: map(f;as) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] listp: List+ prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top or: P ∨ Q ge: i ≥  le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) true: True not: ¬A false: False cons: [a b] guard: {T} nat: decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B
Lemmas referenced :  l_member_wf equal_wf all_wf listp_wf map-length listp_properties list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf length_wf map_equal2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity functionIsType universeIsType hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesis applyEquality lambdaEquality functionEquality inhabitedIsType because_Cache universeEquality isect_memberFormation_alt isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality voidElimination voidEquality dependent_functionElimination unionElimination productElimination independent_functionElimination natural_numberEquality promote_hyp hypothesis_subsumption lambdaFormation addEquality independent_pairFormation independent_isectElimination intEquality minusEquality

Latex:
\mforall{}[T,T':Type].  \mforall{}[a:T  List\msupplus{}].  \mforall{}[f,g:T  {}\mrightarrow{}  T'].
    map(f;a)  =  map(g;a)  supposing  \mforall{}x:T.  ((x  \mmember{}  a)  {}\mRightarrow{}  ((f  x)  =  (g  x)))



Date html generated: 2019_10_15-AM-10_53_23
Last ObjectModification: 2018_09_27-AM-10_02_48

Theory : list!


Home Index