Nuprl Lemma : map_wf_listp
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[l:A List+].  (map(f;l) ∈ B List+)
Proof
Definitions occuring in Statement : 
listp: A List+, 
map: map(f;as), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
listp: A List+, 
top: Top, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
and: P ∧ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
prop: ℙ
Lemmas referenced : 
listp_wf, 
map_wf, 
map-length, 
decidable__lt, 
length_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
less_than_wf, 
listp_properties
Rules used in proof : 
universeIsType, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
functionIsType, 
functionEquality, 
inhabitedIsType, 
universeEquality, 
isect_memberFormation_alt, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
rename, 
setElimination, 
lemma_by_obid, 
dependent_set_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[l:A  List\msupplus{}].    (map(f;l)  \mmember{}  B  List\msupplus{})
Date html generated:
2019_10_15-AM-10_53_28
Last ObjectModification:
2018_09_27-AM-10_02_45
Theory : list!
Home
Index