Nuprl Lemma : map_wf_listp

[A,B:Type]. ∀[f:A ⟶ B]. ∀[l:A List+].  (map(f;l) ∈ List+)


Proof




Definitions occuring in Statement :  listp: List+ map: map(f;as) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] listp: List+ top: Top ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q le: A ≤ B and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop:
Lemmas referenced :  listp_wf map_wf map-length decidable__lt length_wf full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf less_than_wf listp_properties
Rules used in proof :  universeIsType sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache functionIsType functionEquality inhabitedIsType universeEquality isect_memberFormation_alt sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality rename setElimination lemma_by_obid dependent_set_memberEquality voidElimination voidEquality dependent_functionElimination natural_numberEquality unionElimination productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[l:A  List\msupplus{}].    (map(f;l)  \mmember{}  B  List\msupplus{})



Date html generated: 2019_10_15-AM-10_53_28
Last ObjectModification: 2018_09_27-AM-10_02_45

Theory : list!


Home Index