Nuprl Lemma : provision-equality
∀[T:𝕌']. ∀[ok1,ok2:ℙ]. ∀[v1:⋂:↓ok1. T]. ∀[v2:⋂:↓ok2. T].
  (provision(ok1; v1) = provision(ok2; v2) ∈ Provisional(T)) supposing (((↓ok1) ⇒ (v1 = v2 ∈ T)) and (↓ok1 ⇐⇒ ↓ok2))
Proof
Definitions occuring in Statement : 
provision: provision(ok; v), 
provisional-type: Provisional(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
squash: ↓T, 
implies: P ⇒ Q, 
isect: ⋂x:A. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
provisional-type: Provisional(T), 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
provision: provision(ok; v), 
pi1: fst(t), 
pi2: snd(t), 
cand: A c∧ B, 
squash: ↓T, 
exists: ∃x:A. B[x]
Lemmas referenced : 
quotient-member-eq, 
squash_wf, 
iff_wf, 
pi1_wf, 
equal_wf, 
pi2_wf, 
uimplies_subtype, 
provisional-equiv, 
isect_subtype_rel_trivial
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
instantiate, 
extract_by_obid, 
isectElimination, 
productEquality, 
universeEquality, 
sqequalRule, 
isectEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
inhabitedIsType, 
functionEquality, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
universeIsType, 
productIsType, 
isectIsType, 
dependent_functionElimination, 
dependent_pairEquality_alt, 
isect_memberEquality_alt, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
lambdaFormation_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
functionIsType, 
equalityIstype, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[ok1,ok2:\mBbbP{}].  \mforall{}[v1:\mcap{}:\mdownarrow{}ok1.  T].  \mforall{}[v2:\mcap{}:\mdownarrow{}ok2.  T].
    (provision(ok1;  v1)  =  provision(ok2;  v2))  supposing  (((\mdownarrow{}ok1)  {}\mRightarrow{}  (v1  =  v2))  and  (\mdownarrow{}ok1  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}ok2))
Date html generated:
2020_05_20-AM-08_00_47
Last ObjectModification:
2020_05_17-PM-06_52_38
Theory : monads
Home
Index