Nuprl Lemma : provisional-type-cumulativity

[T:𝕌']. (Provisional(T) ⊆Provisional'(T))


Proof




Definitions occuring in Statement :  provisional-type: Provisional(T) subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B provisional-type: Provisional(T) quotient: x,y:A//B[x; y] and: P ∧ Q prop: uimplies: supposing a iff: ⇐⇒ Q implies:  Q all: x:A. B[x] pi1: fst(t) rev_implies:  Q pi2: snd(t) squash: T respects-equality: respects-equality(S;T) so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2] guard: {T}
Lemmas referenced :  provisional-type_wf squash_wf uimplies_subtype subtype-respects-equality istype-universe quotient-member-eq iff_wf pi1_wf equal_wf pi2_wf provisional-equiv subtype_rel_product subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt sqequalHypSubstitution pointwiseFunctionalityForEquality thin instantiate extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination promote_hyp productElimination productIsType equalityIstype universeIsType universeEquality isectIsType because_Cache sqequalBase equalitySymmetry functionIsType equalityTransitivity inhabitedIsType lambdaFormation_alt dependent_functionElimination independent_functionElimination isect_memberEquality_alt applyEquality independent_isectElimination imageElimination hyp_replacement dependent_set_memberEquality_alt independent_pairFormation applyLambdaEquality setElimination rename imageMemberEquality baseClosed isectEquality axiomEquality productEquality functionEquality

Latex:
\mforall{}[T:\mBbbU{}'].  (Provisional(T)  \msubseteq{}r  Provisional'(T))



Date html generated: 2020_05_20-AM-08_00_42
Last ObjectModification: 2020_05_17-PM-10_45_01

Theory : monads


Home Index