Nuprl Lemma : provisional-type-cumulativity
∀[T:𝕌']. (Provisional(T) ⊆r Provisional'(T))
Proof
Definitions occuring in Statement : 
provisional-type: Provisional(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
provisional-type: Provisional(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
rev_implies: P 
⇐ Q
, 
pi2: snd(t)
, 
squash: ↓T
, 
respects-equality: respects-equality(S;T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
guard: {T}
Lemmas referenced : 
provisional-type_wf, 
squash_wf, 
uimplies_subtype, 
subtype-respects-equality, 
istype-universe, 
quotient-member-eq, 
iff_wf, 
pi1_wf, 
equal_wf, 
pi2_wf, 
provisional-equiv, 
subtype_rel_product, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
thin, 
instantiate, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
productElimination, 
productIsType, 
equalityIstype, 
universeIsType, 
universeEquality, 
isectIsType, 
because_Cache, 
sqequalBase, 
equalitySymmetry, 
functionIsType, 
equalityTransitivity, 
inhabitedIsType, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality_alt, 
applyEquality, 
independent_isectElimination, 
imageElimination, 
hyp_replacement, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
isectEquality, 
axiomEquality, 
productEquality, 
functionEquality
Latex:
\mforall{}[T:\mBbbU{}'].  (Provisional(T)  \msubseteq{}r  Provisional'(T))
Date html generated:
2020_05_20-AM-08_00_42
Last ObjectModification:
2020_05_17-PM-10_45_01
Theory : monads
Home
Index