Nuprl Lemma : provisional-type-wf2
∀[T:𝕌'']. (Provisional(T) ∈ 𝕌'')
Proof
Definitions occuring in Statement : 
provisional-type: Provisional(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
provisional-type: Provisional(T), 
prop: ℙ, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
and: P ∧ Q, 
pi1: fst(t), 
implies: P ⇒ Q, 
pi2: snd(t), 
iff: P ⇐⇒ Q, 
so_apply: x[s1;s2], 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
cand: A c∧ B, 
rev_implies: P ⇐ Q, 
sym: Sym(T;x,y.E[x; y]), 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
respects-equality: respects-equality(S;T), 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
quotient_wf, 
squash_wf, 
iff_wf, 
equal_wf, 
uimplies_subtype, 
istype-universe, 
pi1_wf, 
pi2_wf, 
subtype-respects-equality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
universeEquality, 
isectEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
cumulativity, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
because_Cache, 
functionEquality, 
independent_isectElimination, 
universeIsType, 
independent_functionElimination, 
productIsType, 
isectIsType, 
axiomEquality, 
independent_pairFormation, 
lambdaFormation_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
functionIsType, 
equalityIstype, 
isect_memberEquality_alt, 
dependent_functionElimination
Latex:
\mforall{}[T:\mBbbU{}''].  (Provisional(T)  \mmember{}  \mBbbU{}'')
Date html generated:
2020_05_20-AM-08_01_13
Last ObjectModification:
2020_05_17-PM-08_04_25
Theory : monads
Home
Index