Nuprl Lemma : fps-geometric-slice1
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[m:ℕ]. ∀[g:PowerSeries(X;r)].  ([(1÷(1-[g]_1))]_m = ([g]_1)^(m) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-exp: (f)^(n), 
fps-slice: [f]_n, 
fps-div: (f÷g), 
fps-sub: (f-g), 
fps-one: 1, 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
nat: ℕ, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng, 
rng_one: 1
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
prop: ℙ, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
nequal: a ≠ b ∈ T , 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
fps-geometric-slice, 
less_than_wf, 
power-series_wf, 
nat_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
fps-slice_wf, 
fps-exp_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nat_properties, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
squash_wf, 
true_wf, 
rem-one, 
div-one, 
iff_weakening_equal, 
fps-slice-slice
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
cumulativity, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
universeEquality, 
setElimination, 
rename, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
intEquality, 
voidEquality, 
computeAll, 
applyEquality, 
imageElimination
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[m:\mBbbN{}].  \mforall{}[g:PowerSeries(X;r)].    ([(1\mdiv{}(1-[g]\_1))]\_m  =  ([g]\_1)\^{}(m)) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_59_03
Last ObjectModification:
2017_07_26-PM-06_33_40
Theory : power!series
Home
Index