Nuprl Lemma : center-point-in-cube-interior
∀[k:ℕ]. ∀[a:ℚCube(k)].  rat-point-in-cube-interior(k;λj.qavg(fst((a j));snd((a j)));a) supposing ↑Inhabited(a)
Proof
Definitions occuring in Statement : 
rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a), 
inhabited-rat-cube: Inhabited(c), 
rational-cube: ℚCube(k), 
qavg: qavg(a;b), 
nat: ℕ, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
apply: f a, 
lambda: λx.A[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a), 
all: ∀x:A. B[x], 
cand: A c∧ B, 
rational-cube: ℚCube(k), 
implies: P ⇒ Q, 
rational-interval: ℚInterval, 
pi1: fst(t), 
pi2: snd(t), 
rev_uimplies: rev_uimplies(P;Q), 
inhabited-rat-interval: Inhabited(I), 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
nat: ℕ
Lemmas referenced : 
assert-inhabited-rat-cube, 
qle-qavg-iff-1, 
qle_wf, 
assert-q_le-eq, 
iff_weakening_equal, 
istype-assert, 
q_le_wf, 
qavg-qle-iff-1, 
qless-qavg-iff-1, 
qavg-qless-iff-1, 
qless_wf, 
int_seg_wf, 
qle_witness, 
qavg_wf, 
qless_witness, 
inhabited-rat-cube_wf, 
rational-cube_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
lambdaFormation_alt, 
sqequalRule, 
applyEquality, 
inhabitedIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
universeIsType, 
independent_pairFormation, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaEquality_alt, 
independent_pairEquality, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a:\mBbbQ{}Cube(k)].
    rat-point-in-cube-interior(k;\mlambda{}j.qavg(fst((a  j));snd((a  j)));a)  supposing  \muparrow{}Inhabited(a)
Date html generated:
2020_05_20-AM-09_18_55
Last ObjectModification:
2020_01_04-PM-10_30_18
Theory : rationals
Home
Index