Nuprl Lemma : q-ineq-test
∀[a,b,c:ℚ].  (False) supposing (0 < c and ((b + ((1/3) * c)) ≤ a) and ((a + c + c) ≤ b))
Proof
Definitions occuring in Statement : 
qle: r ≤ s, 
qless: r < s, 
qdiv: (r/s), 
qmul: r * s, 
qadd: r + s, 
rationals: ℚ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
false: False, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
false: False, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
not: ¬A, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
qeq: qeq(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
eq_int: (i =z j), 
bfalse: ff, 
assert: ↑b, 
guard: {T}, 
qless: r < s, 
grp_lt: a < b, 
set_lt: a <p b, 
set_blt: a <b b, 
band: p ∧b q, 
infix_ap: x f y, 
set_le: ≤b, 
pi2: snd(t), 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
grp_le: ≤b, 
pi1: fst(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
qdiv: (r/s), 
qmul: r * s, 
qinv: 1/r, 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qadd: r + s, 
lt_int: i <z j, 
bnot: ¬bb, 
true: True, 
squash: ↓T
Lemmas referenced : 
qmul-ident-div, 
qmul_preserves_qle, 
uiff_transitivity, 
qmul_zero_qrng, 
q_distrib, 
qmul_ident, 
qmul_assoc, 
qadd_inv_assoc_q, 
qadd_ac_1_q, 
mon_assoc_q, 
qmul_over_plus_qrng, 
qadd_preserves_qle, 
qinv_inv_q, 
mon_ident_q, 
qinverse_q, 
qadd_comm_q, 
true_wf, 
squash_wf, 
qadd_preserves_qless, 
uiff_transitivity2, 
qle_witness, 
equal-wf-base, 
qless_transitivity_2_qorder, 
qle_transitivity_qorder, 
rationals_wf, 
equal_wf, 
assert-qeq, 
qdiv_wf, 
qmul_wf, 
qadd_wf, 
qle_wf, 
int-subtype-rationals, 
qless_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
applyEquality, 
hypothesisEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaFormation, 
productElimination, 
independent_pairFormation, 
voidElimination, 
minusEquality, 
baseClosed, 
independent_functionElimination, 
lambdaEquality, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (False)  supposing  (0  <  c  and  ((b  +  ((1/3)  *  c))  \mleq{}  a)  and  ((a  +  c  +  c)  \mleq{}  b))
Date html generated:
2016_05_15-PM-11_04_46
Last ObjectModification:
2016_01_16-PM-09_31_01
Theory : rationals
Home
Index