Nuprl Lemma : qadd_functionality_wrt_qless_2
∀[a,b,c,d:ℚ].  (a + c < b + d) supposing (c < d and (a ≤ b))
Proof
Definitions occuring in Statement : 
qle: r ≤ s, 
qless: r < s, 
qadd: r + s, 
rationals: ℚ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
prop: ℙ, 
true: True, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
qless_transitivity_2_qorder, 
iff_weakening_equal, 
qadd_com, 
true_wf, 
squash_wf, 
grp_op_preserves_le_qorder, 
grp_op_preserves_lt_qorder, 
rationals_wf, 
qle_wf, 
qless_wf, 
qadd_wf, 
qless_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination
Latex:
\mforall{}[a,b,c,d:\mBbbQ{}].    (a  +  c  <  b  +  d)  supposing  (c  <  d  and  (a  \mleq{}  b))
Date html generated:
2016_05_15-PM-11_00_06
Last ObjectModification:
2016_01_16-PM-09_30_56
Theory : rationals
Home
Index