Nuprl Lemma : qavg-between
∀[a,b:ℚ]. a < qavg(a;b) < b supposing a < b
Proof
Definitions occuring in Statement :
qavg: qavg(a;b)
,
q-between: a < b < c
,
qless: r < s
,
rationals: ℚ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
qavg: qavg(a;b)
,
q-between: a < b < c
,
and: P ∧ Q
,
implies: P
⇒ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
qless: r < s
,
grp_lt: a < b
,
set_lt: a <p b
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
set_blt: a <b b
,
band: p ∧b q
,
infix_ap: x f y
,
set_le: ≤b
,
pi2: snd(t)
,
oset_of_ocmon: g↓oset
,
dset_of_mon: g↓set
,
grp_le: ≤b
,
pi1: fst(t)
,
qadd_grp: <ℚ+>
,
q_le: q_le(r;s)
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
bor: p ∨bq
,
qpositive: qpositive(r)
,
qsub: r - s
,
qadd: r + s
,
qmul: r * s
,
btrue: tt
,
lt_int: i <z j
,
bnot: ¬bb
,
bfalse: ff
,
qeq: qeq(r;s)
,
eq_int: (i =z j)
,
true: True
,
uiff: uiff(P;Q)
,
cand: A c∧ B
,
rev_uimplies: rev_uimplies(P;Q)
,
squash: ↓T
,
not: ¬A
,
false: False
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
qadd_comm_q,
q_distrib,
qmul_ident,
qadd_preserves_qless,
iff_weakening_equal,
equal_wf,
assert-qeq,
qmul-qdiv-cancel,
true_wf,
squash_wf,
qadd_wf,
qdiv_wf,
qmul_wf,
int-subtype-rationals,
qmul_preserves_qless,
rationals_wf,
qless_wf,
qavg_wf,
qless_witness
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
productElimination,
thin,
independent_pairEquality,
lemma_by_obid,
isectElimination,
hypothesisEquality,
hypothesis,
independent_functionElimination,
because_Cache,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
natural_numberEquality,
applyEquality,
independent_isectElimination,
independent_pairFormation,
lambdaEquality,
imageElimination,
lambdaFormation,
voidElimination,
imageMemberEquality,
baseClosed,
universeEquality
Latex:
\mforall{}[a,b:\mBbbQ{}]. a < qavg(a;b) < b supposing a < b
Date html generated:
2016_05_15-PM-11_06_06
Last ObjectModification:
2016_01_16-PM-09_28_21
Theory : rationals
Home
Index