Nuprl Lemma : qmul_preserves_qless
∀[a,b,c:ℚ].  uiff(a < b;c * a < c * b) supposing 0 < c
Proof
Definitions occuring in Statement : 
qless: r < s, 
qmul: r * s, 
rationals: ℚ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
rev_uimplies: rev_uimplies(P;Q), 
true: True, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
qsub: r - s, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
cand: A c∧ B, 
not: ¬A, 
false: False
Lemmas referenced : 
qless_witness, 
qmul_wf, 
qless_wf, 
int-subtype-rationals, 
rationals_wf, 
qadd_preserves_qless, 
qadd_wf, 
squash_wf, 
true_wf, 
qmul_comm_qrng, 
qadd_comm_q, 
qinverse_q, 
iff_weakening_equal, 
equal_wf, 
qsub_wf, 
qadd_com, 
qmul_assoc_qrng, 
q_distrib, 
qmul-positive, 
qadd_inv_assoc_q, 
mon_ident_q, 
uiff_transitivity2, 
qminus_positive, 
assert-qpositive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
applyEquality, 
minusEquality, 
independent_isectElimination, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality, 
dependent_functionElimination, 
inlFormation, 
productEquality, 
unionElimination, 
lambdaFormation, 
promote_hyp, 
voidElimination
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    uiff(a  <  b;c  *  a  <  c  *  b)  supposing  0  <  c
Date html generated:
2018_05_21-PM-11_56_20
Last ObjectModification:
2017_07_26-PM-06_46_51
Theory : rationals
Home
Index