Nuprl Lemma : qmul-positive
∀a,b:ℚ.  ((0 < a ∧ 0 < b) ∨ (0 < -(a) ∧ 0 < -(b)) ⇐⇒ 0 < a * b)
Proof
Definitions occuring in Statement : 
qless: r < s, 
qmul: r * s, 
rationals: ℚ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
or: P ∨ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
squash: ↓T, 
true: True, 
guard: {T}, 
cand: A c∧ B, 
qpositive: qpositive(r), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
lt_int: i <z j, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
assert: ↑b, 
bfalse: ff, 
false: False, 
not: ¬A
Lemmas referenced : 
or_wf, 
qless_wf, 
int-subtype-rationals, 
qmul_wf, 
rationals_wf, 
assert-qpositive, 
qmul_positive, 
assert_wf, 
qpositive_wf, 
equal_wf, 
squash_wf, 
true_wf, 
qmul_assoc, 
iff_weakening_equal, 
qmul_ac_1_qrng, 
qinv_inv_q, 
q_trichotomy, 
assert_functionality_wrt_uiff, 
qmul_zero_qrng, 
qminus_positive, 
uiff_transitivity, 
qmul_over_minus_qrng, 
qmul_comm_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
productEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
hypothesisEquality, 
because_Cache, 
minusEquality, 
productElimination, 
independent_isectElimination, 
addLevel, 
levelHypothesis, 
promote_hyp, 
andLevelFunctionality, 
equalitySymmetry, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
dependent_functionElimination, 
inlFormation, 
callbyvalueReduce, 
sqleReflexivity, 
isintReduceTrue, 
voidElimination, 
inrFormation
Latex:
\mforall{}a,b:\mBbbQ{}.    ((0  <  a  \mwedge{}  0  <  b)  \mvee{}  (0  <  -(a)  \mwedge{}  0  <  -(b))  \mLeftarrow{}{}\mRightarrow{}  0  <  a  *  b)
Date html generated:
2018_05_21-PM-11_52_19
Last ObjectModification:
2017_07_26-PM-06_45_00
Theory : rationals
Home
Index