Nuprl Lemma : qdiv-non-neg1
∀[a,b:ℚ].  0 ≤ (a/b) supposing 0 < b ∧ (0 ≤ a)
Proof
Definitions occuring in Statement : 
qle: r ≤ s, 
qless: r < s, 
qdiv: (r/s), 
rationals: ℚ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
subtype_rel: A ⊆r B, 
not: ¬A, 
implies: P ⇒ Q, 
guard: {T}, 
false: False, 
prop: ℙ, 
true: True, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
iff_weakening_equal, 
qmul-qdiv-cancel, 
qmul_zero_qrng, 
true_wf, 
squash_wf, 
qmul_wf, 
qle_wf, 
qless_wf, 
and_wf, 
rationals_wf, 
equal_wf, 
qless_irreflexivity, 
qle_weakening_eq_qorder, 
qless_transitivity_2_qorder, 
int-subtype-rationals, 
qle_witness, 
qdiv_wf, 
qmul_preserves_qle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
lambdaFormation, 
hypothesisEquality, 
voidElimination, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[a,b:\mBbbQ{}].    0  \mleq{}  (a/b)  supposing  0  <  b  \mwedge{}  (0  \mleq{}  a)
Date html generated:
2016_05_15-PM-11_05_04
Last ObjectModification:
2016_01_16-PM-09_28_00
Theory : rationals
Home
Index