Nuprl Lemma : qmul_reverses_qless

[a,b,c:ℚ].  uiff(a < b;c b < a) supposing c < 0


Proof




Definitions occuring in Statement :  qless: r < s qmul: s rationals: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a true: True implies:  Q prop: squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  qmul_com qadd_ac_1_q qmul_comm_qrng qmul_over_minus_qrng qmul_preserves_qless iff_weakening_equal mon_ident_q qinverse_q qadd_comm_q true_wf squash_wf qless_witness rationals_wf int-subtype-rationals qless_wf qadd_wf qmul_wf qadd_preserves_qless
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin because_Cache minusEquality natural_numberEquality hypothesis applyEquality sqequalRule hypothesisEquality productElimination independent_isectElimination isect_memberFormation introduction independent_pairEquality isect_memberEquality independent_functionElimination equalityTransitivity equalitySymmetry lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality independent_pairFormation

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    uiff(a  <  b;c  *  b  <  c  *  a)  supposing  c  <  0



Date html generated: 2016_05_15-PM-10_59_41
Last ObjectModification: 2016_01_16-PM-09_31_54

Theory : rationals


Home Index