Nuprl Lemma : rat-point-in-intersection
∀[k:ℕ]. ∀[x:ℕk ⟶ ℚ]. ∀[c,d:ℚCube(k)].
  uiff(rat-point-in-cube(k;x;c ⋂ d);rat-point-in-cube(k;x;c) ∧ rat-point-in-cube(k;x;d))
Proof
Definitions occuring in Statement : 
rat-point-in-cube: rat-point-in-cube(k;x;c), 
rat-cube-intersection: c ⋂ d, 
rational-cube: ℚCube(k), 
rationals: ℚ, 
int_seg: {i..j-}, 
nat: ℕ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
rat-point-in-cube: rat-point-in-cube(k;x;c), 
all: ∀x:A. B[x], 
rational-cube: ℚCube(k), 
implies: P ⇒ Q, 
rational-interval: ℚInterval, 
pi1: fst(t), 
pi2: snd(t), 
prop: ℙ, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
nat: ℕ, 
rat-cube-intersection: c ⋂ d, 
rat-interval-intersection: I ⋂ J, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
qle_witness, 
rat-point-in-cube_wf, 
rat-cube-intersection_wf, 
subtype_rel_self, 
int_seg_wf, 
rational-interval_wf, 
rational-cube_wf, 
rationals_wf, 
istype-nat, 
qle_wf, 
iff_weakening_uiff, 
qmax_wf, 
qmax_lb, 
qmin_wf, 
qmin_ub
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality_alt, 
extract_by_obid, 
isectElimination, 
applyEquality, 
inhabitedIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionIsTypeImplies, 
universeIsType, 
functionEquality, 
setElimination, 
rename, 
imageElimination, 
productIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType, 
natural_numberEquality, 
productEquality, 
promote_hyp
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[c,d:\mBbbQ{}Cube(k)].
    uiff(rat-point-in-cube(k;x;c  \mcap{}  d);rat-point-in-cube(k;x;c)  \mwedge{}  rat-point-in-cube(k;x;d))
Date html generated:
2020_05_20-AM-09_18_12
Last ObjectModification:
2019_11_02-PM-04_37_31
Theory : rationals
Home
Index