Nuprl Lemma : funtype_wf

[T:Type]. ∀[n:ℕ]. ∀[A:ℕn ⟶ Type].  (funtype(n;A;T) ∈ Type)


Proof




Definitions occuring in Statement :  funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T funtype: funtype(n;A;T) int_seg: {i..j-} nat: lelt: i ≤ j < k and: P ∧ Q guard: {T} ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  nat_wf int_seg_wf lelt_wf decidable__lt int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties subtract_wf primrec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination universeEquality hypothesisEquality cumulativity lambdaEquality functionEquality applyEquality dependent_set_memberEquality setElimination rename natural_numberEquality hypothesis independent_pairFormation productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].    (funtype(n;A;T)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-02_09_02
Last ObjectModification: 2016_01_15-PM-10_21_45

Theory : untyped!computation


Home Index