Nuprl Lemma : mk_lambdas_unroll2
∀[F:Top]. ∀[m:ℕ+].  (mk_lambdas(F;m) ~ mk_lambdas(λx.F;m - 1))
Proof
Definitions occuring in Statement : 
mk_lambdas: mk_lambdas(F;m), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
top: Top, 
lambda: λx.A[x], 
subtract: n - m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
mk_lambdas: mk_lambdas(F;m), 
top: Top, 
subtract: n - m, 
nat_plus: ℕ+, 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
top_wf, 
set_subtype_base, 
sqequal-wf-base, 
primrec-wf-nat-plus, 
nat_plus_wf, 
int_subtype_base, 
all_wf, 
add-subtract-cancel, 
add-swap, 
subtract_wf, 
less_than_wf, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
less-iff-le, 
not-lt-2, 
false_wf, 
decidable__lt, 
mk_lambdas_unroll, 
nat_plus_properties, 
base_wf, 
primrec0_lemma, 
primrec1_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
rename, 
isectElimination, 
hypothesisEquality, 
setElimination, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
intEquality, 
because_Cache, 
minusEquality, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalAxiom
Latex:
\mforall{}[F:Top].  \mforall{}[m:\mBbbN{}\msupplus{}].    (mk\_lambdas(F;m)  \msim{}  mk\_lambdas(\mlambda{}x.F;m  -  1))
Date html generated:
2016_05_15-PM-02_10_02
Last ObjectModification:
2016_01_15-PM-10_21_00
Theory : untyped!computation
Home
Index