| Some definitions of interest. |
|
prime | Def prime(a) == a = 0 & (a ~ 1) & ( b,c: . a | b c  a | b a | c) |
| | Thm* a: . prime(a) Prop |
|
divides | Def b | a == c: . a = b c |
| | Thm* a,b: . (a | b) Prop |
|
iter_via_intseg | Def Iter(f;u) i:{a..b }. e(i)
Def == if a< b f((Iter(f;u) i:{a..b-1 }. e(i)),e(b-1)) else u fi
Def (recursive) |
| | Thm* f:(A A A), u:A, a,b: , e:({a..b } A). (Iter(f;u) i:{a..b }. e(i)) A |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |