| Some definitions of interest. |
|
is_prime_factorization | Def is_prime_factorization(a; b; f) == i:{a..b }. 0<f(i)  prime(i) |
|
| Thm* a,b: , f:({a..b }  ). is_prime_factorization(a; b; f) Prop |
|
prime | Def prime(a) == a = 0 & (a ~ 1) & ( b,c: . a | b c  a | b a | c) |
|
| Thm* a: . prime(a) Prop |
|
divides | Def b | a == c: . a = b c |
|
| Thm* a,b: . (a | b) Prop |
|
eval_factorization | Def  {a..b }(f) == i:{a..b }. i f(i) |
|
| Thm* a,b: , f:({a..b }  ).  {a..b }(f)  |
|
int_seg | Def {i..j } == {k: | i k < j } |
|
| Thm* m,n: . {m..n } Type |
|
iter_via_intseg | Def Iter(f;u) i:{a..b }. e(i)
Def == if a< b f((Iter(f;u) i:{a..b-1 }. e(i)),e(b-1)) else u fi
Def (recursive) |
|
| Thm* f:(A A A), u:A, a,b: , e:({a..b } A). (Iter(f;u) i:{a..b }. e(i)) A |
|
nat | Def == {i: | 0 i } |
|
| Thm* Type |