| Some definitions of interest. |
|
is_prime_factorization | Def is_prime_factorization(a; b; f) == i:{a..b}. 0<f(i) prime(i) |
| | Thm* a,b:, f:({a..b}). is_prime_factorization(a; b; f) Prop |
|
prime | Def prime(a) == a = 0 & (a ~ 1) & (b,c:. a | bc a | b a | c) |
| | Thm* a:. prime(a) Prop |
|
divides | Def b | a == c:. a = bc |
| | Thm* a,b:. (a | b) Prop |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
int_upper | Def {i...} == {j:| ij } |
| | Thm* n:. {n...} Type |
|
iter_via_intseg | Def Iter(f;u) i:{a..b}. e(i)
Def == if a<b f((Iter(f;u) i:{a..b-1}. e(i)),e(b-1)) else u fi
Def (recursive) |
| | Thm* f:(AAA), u:A, a,b:, e:({a..b}A). (Iter(f;u) i:{a..b}. e(i)) A |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |