Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
iter_via_intsegDef  Iter(f;ui:{a..b}. e(i)
Def  == if a<b f((Iter(f;ui:{a..b-1}. e(i)),e(b-1)) else u fi
Def  (recursive)
Thm*  f:(AAA), u:Aa,b:e:({a..b}A). (Iter(f;ui:{a..b}. e(i))  A
leDef  AB == B<A
Thm*  i,j:. (ij Prop
trivial_factorizationDef  trivial_factorization(z)(i) == if i=z 1 else 0 fi
Thm*  a,b:z:{a..b}. trivial_factorization(z {a..b}

About:
ifthenelseintnatural_numbersubtractless_thansetapply
functionrecursive_def_noticeuniversememberpropall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc