Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
iter_via_intsegDef  Iter(f;ui:{a..b}. e(i)
Def  == if a<b f((Iter(f;ui:{a..b-1}. e(i)),e(b-1)) else u fi
Def  (recursive)
Thm*  f:(AAA), u:Aa,b:e:({a..b}A). (Iter(f;ui:{a..b}. e(i))  A
natDef   == {i:| 0i }
Thm*    Type
nequalDef  a  b  T == a = b  T
Thm*  A:Type, x,y:A. (x  y Prop
trivial_factorizationDef  trivial_factorization(z)(i) == if i=z 1 else 0 fi
Thm*  a,b:z:{a..b}. trivial_factorization(z {a..b}

About:
ifthenelseintnatural_numbersubtractsetapplyfunction
recursive_def_noticeuniverseequalmemberpropall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc