Definitions FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
iffDef  P  Q == (P  Q) & (P  Q)
Thm*  A,B:Prop. (A  B Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
int_upperDef  {i...} == {j:ij }
Thm*  n:. {n...}  Type
iter_via_intsegDef  Iter(f;ui:{a..b}. e(i)
Def  == if a<b f((Iter(f;ui:{a..b-1}. e(i)),e(b-1)) else u fi
Def  (recursive)
Thm*  f:(AAA), u:Aa,b:e:({a..b}A). (Iter(f;ui:{a..b}. e(i))  A
natDef   == {i:| 0i }
Thm*    Type

About:
ifthenelseintnatural_numbersubtractsetapplyfunction
recursive_def_noticeuniversememberpropimpliesandall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA Sections DiscrMathExt Doc