By: |
xy xy<k (h:({2..k}). ({2..k}(g) = {2..k}(h) & h(xy) = 0 & (u:{2..k}. xy<u h(u) = g(u))) Asserted ... THEN Inst: Thm* i:{2...}, j:{1...}. j<ij Using:[x | y] ...w |
1 |
4. y : {2..k} 5. xy 6. xy<k 7. y<xy h:({2..k}). {2..k}(g) = {2..k}(h) & h(xy) = 0 & (u:{2..k}. xy<u h(u) = g(u)) | PREMISE |
2 |
3. xy 3. 3. xy<k 3. 3. (h:({2..k}). 3. ({2..k}(g) = {2..k}(h) 3. (& h(xy) = 0 3. (& (u:{2..k}. xy<u h(u) = g(u))) 4. x : {2..k} 5. y : {2..k} 6. xy<k 7. y<xy h:({2..k}). {2..k}(g) = {2..k}(h) & h(xy) = 0 & (u:{2..k}. xy<u h(u) = g(u)) | 2 steps |
About: