(6steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: eval trivial factorization 1 1

1. a : 
2. b : 
3. j : {a..b}
  ( i:{a..j}. itrivial_factorization(j)(i))
  jtrivial_factorization(j)(j)( i:{j+1..b}. itrivial_factorization(j)(i))
  =
  j


By: Inst: Thm*  x,y:x = y  trivial_factorization(x)(y) = 1   Using:[j | j]
THEN
Rewrite by Hyp:-1
THEN
Rewrite by Thm*  x,y:x  y  trivial_factorization(x)(y) = 0  


Generated subgoal:

1 4. trivial_factorization(j)(j) = 1  
  ( i:{a..j}. i0)j1( i:{j+1..b}. i0) = j

3 steps

About:
intnatural_numberaddmultiplylambdaapplyequalimpliesall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(6steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc