(6steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
eval
trivial
factorization
1
1.
a
:
2.
b
:
3.
j
: {
a
..
b
}
(
i
:{
a
..
b
}.
i
trivial_factorization(
j
)(
i
)) =
j
By:
Rewrite by
Thm*
a
,
c
,
b
:
,
e
:({
a
..
b
}
).
Thm*
a
c
Thm*
Thm*
c
<
b
Thm*
Thm*
(
i
:{
a
..
b
}.
e
(
i
)) = (
i
:{
a
..
c
}.
e
(
i
))
e
(
c
)
(
i
:{
c
+1..
b
}.
e
(
i
))
Using:[
c
:=
j
]
Generated subgoal:
1
(
i
:{
a
..
j
}.
i
trivial_factorization(
j
)(
i
))
j
trivial_factorization(
j
)(
j
)
(
i
:{
j
+1..
b
}.
i
trivial_factorization(
j
)(
i
))
=
j
4
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(6steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc