(8steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
prime
factorization
exists
1
1.
n
: {1...}
h
:({2..(
n
+1)
}
).
n
=
{2..
n
+1
}(
h
) & is_prime_factorization(2; (
n
+1);
h
)
By:
g
:({2..(
n
+1)
}
).
n
=
{2..
n
+1
}(
g
) Asserted
Generated subgoals:
1
g
:({2..(
n
+1)
}
).
n
=
{2..
n
+1
}(
g
)
3
steps
2
2.
g
:({2..(
n
+1)
}
).
n
=
{2..
n
+1
}(
g
)
h
:({2..(
n
+1)
}
).
n
=
{2..
n
+1
}(
h
) & is_prime_factorization(2; (
n
+1);
h
)
3
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(8steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc