(8steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: prime factorization exists 1

1. n : {1...}
  h:({2..(n+1)}). n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)


By: g:({2..(n+1)}). n = {2..n+1}(g)  Asserted


Generated subgoals:

1   g:({2..(n+1)}). n = {2..n+1}(g)
3 steps
2 2. g:({2..(n+1)}). n = {2..n+1}(g)
  h:({2..(n+1)}). n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)

3 steps

About:
intnatural_numberaddfunctionequalandexists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(8steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc