(15steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
prime
factorization
unique
1
1
1
1
1
1.
a
: {2...}
2.
b
:
3.
k
:
4.
k1
:
.
4.
k1
<
k
4.
4.
(
g
,
h
:({
a
..
b
}
).
4. (
is_prime_factorization(
a
;
b
;
g
) & is_prime_factorization(
a
;
b
;
h
)
4. (
4. (
{
a
..
b
}(
g
) =
k1
{
a
..
b
}(
g
) =
{
a
..
b
}(
h
)
g
=
h
)
5.
g
: {
a
..
b
}
6.
h
: {
a
..
b
}
7. is_prime_factorization(
a
;
b
;
g
)
8. is_prime_factorization(
a
;
b
;
h
)
9.
{
a
..
b
}(
g
) =
k
10.
{
a
..
b
}(
g
) =
{
a
..
b
}(
h
)
11.
j
: {
a
..
b
}
12. 0<
g
(
j
)
13. prime(
j
)
14.
j
|
{
a
..
b
}(
g
)
15.
j
|
{
a
..
b
}(
h
)
16. 0<
h
(
j
)
17.
{
a
..
b
}(reduce_factorization(
g
;
j
))
17.
=
17.
{
a
..
b
}(reduce_factorization(
h
;
j
))
g
=
h
By:
BackThru:
Thm*
a
,
b
:
,
f
,
g
:({
a
..
b
}
),
j
:{
a
..
b
}.
Thm*
0<
f
(
j
)
Thm*
Thm*
0<
g
(
j
)
reduce_factorization(
f
;
j
) = reduce_factorization(
g
;
j
)
f
=
g
Using:[
j
] ...
Generated subgoal:
1
reduce_factorization(
g
;
j
) = reduce_factorization(
h
;
j
)
4
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(15steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc