(16steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: split factor1 char 1 1

1. k : {2...}
2. g : {2..k}
3. x : {2..k}
4. xx<k
5. x<xx
6. h : {2..k}
7. h = split_factor1(gx)
8. h(xx) = 0
9. h(x) = g(x)+g(xx)+g(xx)
10. u:{2..k}. u = x  u = xx  h(u) = g(u)
  {2..x}(g)xg(x){x+1..xx}(g)(xx)g(xx){xx+1..k}(g)
  =
  {2..x}(h)xh(x){x+1..xx}(h)(xx)h(xx){xx+1..k}(h)


By: {Factor out the sections falling between x and xx, on which the two
{factorizations agree, by Hyp:11
{}
SideProof


Generated subgoal:

1   xg(x)(xx)g(xx) = xh(x)(xx)h(xx)
3 steps

About:
intnatural_numberaddmultiplyless_thanlambdaapplyfunctionequal
impliesallpfdisp_conclred_hyp
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(16steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc