Who Cites full switch inv? | |
full_switch_inv | Def full_switch_inv(E;A;evt;tg;tr_u;tr_l) == tr_m:A List. (tr_l R(tg) tr_m) & (map(evt;tr_m) layerR(E) tr_u) & switch_inv( < A,evt,tg > (E))(tr_m) |
Thm* E:EventStruct, A:Type, f:(A|E|), t:(ALabel), tr_u:|E| List, tr_l:A List. full_switch_inv(E;A;f;t;tr_u;tr_l) Prop | |
induced_tagged_event_str | Def < A,evt,tg > (E) == < A,MS(E),msg(E) o evt,loc(E) o evt,is-send(E) o evt,tg, > |
Thm* E:EventStruct, A:Type, f:(A|E|), t:(ALabel). < A,f,t > (E) TaggedEventStruct | |
switch_inv | Def switch_inv(E)(tr) == i,j,k:||tr||. i < j (is-send(E)(tr[i])) (is-send(E)(tr[j])) tag(E)(tr[i]) = tag(E)(tr[j]) tr[j] delivered at time k (k':||tr||. k' < k & tr[i] delivered at time k' & loc(E)(tr[k']) = loc(E)(tr[k])) |
Thm* E:TaggedEventStruct. switch_inv(E) (|E| List)Prop | |
map | Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive) |
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List | |
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List | |
layer_rel | Def layerR(E) == ((asyncR(E) delayableR(E)) send-enabledR(E))^* |
Thm* E:EventStruct. layerR(E) (|E| List)(|E| List)Prop | |
tag_rel | Def R(tg) == swap adjacent[tg(x) = tg(y) Label]^* |
Thm* A:Type, tg:(ALabel). R(tg) (A List)(A List)Prop | |
delivered_at | Def x delivered at time k == (x =msg=(E) tr[k]) & (is-send(E)(tr[k])) |
Thm* E:EventStruct, tr:|E| List, x:|E|, k:||tr||. x delivered at time k Prop | |
R_send_enabled | Def send-enabledR(E)(L_1,L_2) == x:|E|. (is-send(E)(x)) & L_2 = (L_1 @ [x]) |
Thm* E:EventStruct. send-enabledR(E) (|E| List)(|E| List)Prop | |
R_delayable | Def delayableR(E) == swap adjacent[(x =msg=(E) y) & (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))] |
Thm* E:EventStruct. delayableR(E) (|E| List)(|E| List)Prop | |
R_async | Def asyncR(E) == swap adjacent[loc(E)(x) = loc(E)(y) & (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))] |
Thm* E:EventStruct. asyncR(E) (|E| List)(|E| List)Prop | |
event_is_snd | Def is-send(E) == 1of(2of(2of(2of(2of(E))))) |
Thm* E:EventStruct. is-send(E) |E| | |
compose | Def (f o g)(x) == f(g(x)) |
Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC | |
event_loc | Def loc(E) == 1of(2of(2of(2of(E)))) |
Thm* E:EventStruct. loc(E) |E|Label | |
event_msg_eq | Def =msg=(E)(e_1,e_2) == (msg(E)(e_1)) =(MS(E)) (msg(E)(e_2)) |
Thm* E:EventStruct. =msg=(E) |E||E| | |
event_msg | Def msg(E) == 1of(2of(2of(E))) |
Thm* E:EventStruct. msg(E) |E||MS(E)| | |
event_msg_str | Def MS(E) == 1of(2of(E)) |
Thm* E:EventStruct. MS(E) MessageStruct | |
swap_adjacent | Def swap adjacent[P(x;y)](L1,L2) == i:(||L1||-1). P(L1[i];L1[(i+1)]) & L2 = swap(L1;i;i+1) A List |
Thm* A:Type, P:(AAProp). swap adjacent[P(x,y)] (A List)(A List)Prop | |
swap | Def swap(L;i;j) == (L o (i, j)) |
Thm* T:Type, L:T List, i,j:||L||. swap(L;i;j) T List | |
permute_list | Def (L o f) == mklist(||L||;i.L[(f(i))]) |
Thm* T:Type, L:T List, f:(||L||||L||). (L o f) T List | |
select | Def l[i] == hd(nth_tl(i;l)) |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
Thm* A:Type, l:A List. ||l|| | |
Thm* ||nil|| | |
int_seg | Def {i..j} == {k:| i k < j } |
Thm* m,n:. {m..n} Type | |
event_tag | Def tag(E) == 1of(2of(2of(2of(2of(2of(E)))))) |
Thm* E:TaggedEventStruct. tag(E) |E|Label | |
rel_star | Def (R^*)(x,y) == n:. x R^n y |
Thm* T:Type, R:(TTProp). (R^*) TTProp | |
lelt | Def i j < k == ij & j < k |
nat | Def == {i:| 0i } |
Thm* Type | |
le | Def AB == B < A |
Thm* i,j:. (ij) Prop | |
not | Def A == A False |
Thm* A:Prop. (A) Prop | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
rel_or | Def (R1 R2)(x,y) == (x R1 y) (x R2 y) |
Thm* T:Type, R1,R2:(TTProp). (R1 R2) TTProp | |
carrier | Def |S| == 1of(S) |
Thm* S:Structure. |S| Type | |
msg_eq | Def =(M)(m_1,m_2) == ((content(M)(m_1)) =(cEQ(M)) (content(M)(m_2)))sender(M)(m_1) = sender(M)(m_2)(uid(M)(m_1)=uid(M)(m_2)) |
Thm* M:MessageStruct. =(M) |M||M| | |
msg_id | Def uid(MS) == 1of(2of(2of(2of(2of(MS))))) |
Thm* M:MessageStruct. uid(M) |M| | |
msg_sender | Def sender(MS) == 1of(2of(2of(2of(MS)))) |
Thm* M:MessageStruct. sender(M) |M|Label | |
msg_content | Def content(MS) == 1of(2of(2of(MS))) |
Thm* M:MessageStruct. content(M) |M||cEQ(M)| | |
msg_content_eq | Def cEQ(MS) == 1of(2of(MS)) |
Thm* M:MessageStruct. cEQ(M) DecidableEquiv | |
eq_dequiv | Def =(DE) == 1of(2of(DE)) |
Thm* E:DecidableEquiv. =(E) |E||E| | |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
nth_tl | Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive) |
Thm* l1,l2:Pattern. l1 = l2 | |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
mklist | Def mklist(n;f) == primrec(n;nil;i,l. l @ [(f(i))]) |
Thm* T:Type, n:, f:(nT). mklist(n;f) T List | |
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
Thm* T:Type, as,bs:T List. (as @ bs) T List | |
rel_exp | Def R^n == if n=0 x,y. x = y T else x,y. z:T. (x R z) & (z R^n-1 y) fi (recursive) |
Thm* n:, T:Type, R:(TTProp). R^n TTProp | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
le_int | Def ij == j < i |
Thm* i,j:. (ij) | |
case_default | Def Default = > body(value,value) == body |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
case | Def Case(value) body == body(value,value) |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
flip | Def (i, j)(x) == if x=ij ;x=ji else x fi |
Thm* k:, i,j:k. (i, j) kk | |
primrec | Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive) |
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T | |
eq_int | Def i=j == if i=j true ; false fi |
Thm* i,j:. (i=j) | |
lt_int | Def i < j == if i < j true ; false fi |
Thm* i,j:. (i < j) | |
bnot | Def b == if b false else true fi |
Thm* b:. b | |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
eq_atom | Def x=yAtom == if x=yAtomtrue; false fi |
Thm* x,y:Atom. x=yAtom | |
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
Syntax: | full_switch_inv(E;A;evt;tg;tr_u;tr_l) | has structure: | full_switch_inv(E; A; evt; tg; tr_u; tr_l) |
About: