Who Cites ioa inv vc? | |
ioa_inv_vc | Def VCs(A;I) == < *vc_imp(mk_imp(A.init, I))* > +* ioa_trans_all{i}(A;I) |
Thm* A:ioa{i:l}(), I:Fmla. VCs(A;I) VCs | |
ioa_trans_all | Def ioa_trans_all{i}(A;I) == < ioa_trans(A;a.lbl;I) | a A.da > |
Thm* A:ioa{i:l}(), I:Fmla. ioa_trans_all{i}(A;I) VCs | |
ioa_init | Def t.init == 1of(2of(2of(t))) |
Thm* t:ioa{i:l}(). t.init Collection(rel()) | |
Thm* t:ioa{i:l}(). t.init Fmla | |
mk_imp | Def mk_imp(hyp, concl) == < hyp,concl > |
Thm* hyp,concl:Fmla. mk_imp(hyp, concl) imp{i:l}() | |
vc_imp | Def vc_imp(x) == inl(x) |
Thm* x:imp{i:l}(). vc_imp(x) vc{i:l}() | |
vcs_singleton | Def < *v* > == < v > |
Thm* v:vc{i:l}(). < *v* > VCs | |
vcs_add | Def a +* b == a + b |
Thm* a,b:VCs. (a +* b) VCs | |
dec_lbl | Def t.lbl == 1of(t) |
Thm* t:dec(). t.lbl Label | |
ioa_trans | Def ioa_trans(A;a;I) == vc_qimp(mk_qimp(a, I action_pre(a;A.pre), smts_eff_pred(action_effect(a;A.eff;A.frame);I))) |
Thm* A:ioa{i:l}(), a:Label, I:Fmla. ioa_trans(A;a;I) vc{i:l}() | |
ioa_da | Def t.da == 1of(2of(t)) |
Thm* t:ioa{i:l}(). t.da Collection(dec()) | |
vc | Def vc{i:l}() == imp{i:l}()+qimp{i:l}() |
Thm* vc{i:l}() Type{i'} | |
dec | Def dec() == LabelSimpleType |
Thm* dec() Type | |
action_effect | Def action_effect(a;es;fs) == < e.smt | e < e es | e.kind = a > > + < mk_smt(f.var, f.var, f.typ) | f < f fs | a f.acts > > |
Thm* a:Label, es:Collection(eff()), fs:Collection(frame()). action_effect(a;es;fs) Collection(smt()) | |
smts_eff_pred | Def smts_eff_pred(ss;p) == (rp.smts_eff_rel(ss;r)) |
Thm* p:Fmla, ss:Collection(smt()). smts_eff_pred(ss;p) Fmla | |
action_pre | Def action_pre(a;ps) == < p.rel | p < p ps | p.kind = a > > |
Thm* a:Label, ps:Collection(pre()). action_pre(a;ps) Fmla | |
smts_eff_rel | Def smts_eff_rel(ss;r) == col_subst(x.smts_eff(ss;x);r) |
Thm* r:rel(), ss:Collection(smt()). smts_eff_rel(ss;r) Fmla | |
smts_eff | Def smts_eff(ss;x) == smt_terms( < s ss | s.lbl = x > ) |
Thm* ss:Collection(smt()), x:Label. smts_eff(ss;x) Collection(Term) | |
col_subst | Def col_subst(c;r) == col_map_subst(as.rel_subst(as;r); < zip(rel_vars(r);s) | s col_list_prod(map(c;rel_vars(r))) > ) |
Thm* c:(LabelCollection(Term)), r:rel(). col_subst(c;r) Fmla | |
Thm* c:(LabelCollection(Term)), r:rel(). col_subst(c;r) Collection(rel()) | |
smt_terms | Def smt_terms(c) == < s.term | s c > |
Thm* c:Collection(smt()). smt_terms(c) Collection(Term) | |
col_map_subst | Def col_map_subst(x.f(x);c) == < f(x) | x c > |
Thm* f:(((LabelTerm) List)rel()), c:Collection((LabelTerm) List). col_map_subst(x.f(x);c) Collection(rel()) | |
col_map | Def < f(x) | x c > (y) == x:T. x c & y = f(x) T' |
Thm* T,T':Type, f:(TT'), c:Collection(T). < f(x) | x c > Collection(T') | |
ioa_frame | Def t.frame == 2of(2of(2of(2of(2of(t))))) |
Thm* t:ioa{i:l}(). t.frame Collection(frame()) | |
ioa_eff | Def t.eff == 1of(2of(2of(2of(2of(t))))) |
Thm* t:ioa{i:l}(). t.eff Collection(eff()) | |
ioa_pre | Def t.pre == 1of(2of(2of(2of(t)))) |
Thm* t:ioa{i:l}(). t.pre Collection(pre()) | |
frame_typ | Def t.typ == 1of(2of(t)) |
Thm* t:frame(). t.typ SimpleType | |
frame_acts | Def t.acts == 2of(2of(t)) |
Thm* t:frame(). t.acts Label List | |
eff_smt | Def t.smt == 2of(2of(2of(t))) |
Thm* t:eff(). t.smt smt() | |
pre_rel | Def t.rel == 2of(2of(t)) |
Thm* t:pre(). t.rel rel() | |
rel_vars | Def rel_vars(r) == reduce(t,vs. term_vars(t) @ vs;nil;r.args) |
Thm* r:rel(). rel_vars(r) Label List | |
rel_subst | Def rel_subst(as;r) == mk_rel(r.name, map(t.term_subst(as;t);r.args)) |
Thm* r:rel(), as:(LabelTerm) List. rel_subst(as;r) rel() | |
smt_term | Def t.term == 1of(2of(t)) |
Thm* t:smt(). t.term Term | |
rel_args | Def t.args == 2of(t) |
Thm* t:rel(). t.args Term List | |
term_subst | Def term_subst(as;t) == iterate(statevar v- > apply_alist(as;v;v) statevar v'- > apply_alist(as;v;v') funsymbol f- > f freevar f- > f trace(P)- > trace(P) x(y)- > x y over t) |
Thm* t:Term, as:(LabelTerm) List. term_subst(as;t) Term | |
apply_alist | Def apply_alist(as;l;d) == 2of((first p as s.t. 1of(p) = l else < l,d > )) |
Thm* T:Type, as:(LabelT) List, l:Label, d:T. apply_alist(as;l;d) T | |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
frame_var | Def t.var == 1of(t) |
Thm* t:frame(). t.var Label | |
eff_kind | Def t.kind == 1of(t) |
Thm* t:eff(). t.kind Label | |
pre_kind | Def t.kind == 1of(t) |
Thm* t:pre(). t.kind Label | |
smt_lbl | Def t.lbl == 1of(t) |
Thm* t:smt(). t.lbl Label | |
rel_name | Def t.name == 1of(t) |
Thm* t:rel(). t.name relname() | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
col_singleton | Def < x > (y) == y = x T |
Thm* T:Type, x:T. < x > Collection(T) | |
pred_and | Def P Q == P + Q |
Thm* P,Q:Fmla. (P Q) Fmla | |
col_add | Def (a + b)(x) == x a x b |
Thm* T:Type, a,b:Collection(T). (a + b) Collection(T) | |
mk_qimp | Def mk_qimp(lbl, hyp, concl) == < lbl,hyp,concl > |
Thm* lbl:Label, hyp,concl:Fmla. mk_qimp(lbl, hyp, concl) qimp{i:l}() | |
vc_qimp | Def vc_qimp(x) == inr(x) |
Thm* x:qimp{i:l}(). vc_qimp(x) vc{i:l}() | |
qimp | Def qimp{i:l}() == LabelFmlaFmla |
Thm* qimp{i:l}() Type{i'} | |
imp | Def imp{i:l}() == FmlaFmla |
Thm* imp{i:l}() Type{i'} | |
eff | Def eff() == LabelLabelSimpleTypesmt() |
Thm* eff() Type | |
smt | Def smt() == LabelTermSimpleType |
Thm* smt() Type | |
frame | Def frame() == LabelSimpleType(Label List) |
Thm* frame() Type | |
pre | Def pre() == LabelLabelrel() |
Thm* pre() Type | |
pred | Def Fmla == Collection(rel()) |
Thm* Fmla{i} Type{i'} | |
rel | Def rel() == relname()(Term List) |
Thm* rel() Type | |
relname | Def relname() == SimpleType+Label |
Thm* relname() Type | |
st | Def SimpleType == Tree(Label+Unit) |
Thm* SimpleType Type | |
term | Def Term == Tree(ts()) |
Thm* Term Type | |
ts | Def ts() == Label+Label+Label+Label+Label |
Thm* ts() Type | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
col_filter | Def < x c | P(x) > (x) == x c & P(x) |
Thm* T:Type, c:Collection(T), Q:(TProp). < i c | Q(i) > Collection(T) | |
col_accum | Def (xc.f(x))(y) == x:T. x c & y f(x) |
Thm* T,T':Type, f:(TCollection(T')), c:Collection(T). (xc.f(x)) Collection(T') | |
col_list_prod | Def col_list_prod(l)(x) == ||x|| = ||l|| & (i:. i < ||x|| x[i] l[i]) |
Thm* T:Type, l:Collection(T) List. col_list_prod(l) Collection(T List) | |
col_member | Def x c == c(x) |
Thm* T:Type, x:T, c:Collection(T). x c Prop | |
tvar | Def l == tree_leaf(ts_var(l)) |
Thm* l:Label. l Term | |
mk_smt | Def mk_smt(lbl, term, typ) == < lbl,term,typ > |
Thm* lbl:Label, term:Term, typ:SimpleType. mk_smt(lbl, term, typ) smt() | |
lbls_member | Def x ls == reduce(a,b. x = a b;false;ls) |
Thm* x:Label, ls:Label List. x ls | |
select | Def l[i] == hd(nth_tl(i;l)) |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A | |
nth_tl | Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List | |
le_int | Def ij == j < i |
Thm* i,j:. (ij) | |
bnot | Def b == if b false else true fi |
Thm* b:. b | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive) |
Thm* l1,l2:Pattern. l1 = l2 | |
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
Thm* E:Type. Tree(E) Type | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
ts_var | Def ts_var(x) == inl(x) |
Thm* x:Label. ts_var(x) ts() | |
ttrace | Def trace(l) == tree_leaf(ts_trace(l)) |
Thm* l:Label. trace(l) Term | |
tfvar | Def l == tree_leaf(ts_fvar(l)) |
Thm* l:Label. l Term | |
topr | Def f == tree_leaf(ts_op(f)) |
Thm* f:Label. f Term | |
tpvar | Def l' == tree_leaf(ts_pvar(l)) |
Thm* l:Label. l' Term | |
tree_leaf | Def tree_leaf(x) == inl(x) |
Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T) | |
Thm* E:Type, x:E. tree_leaf(x) Tree(E) | |
bor | Def p q == if p true else q fi |
Thm* p,q:. (p q) | |
find | Def (first x as s.t. P(x) else d) == Case of filter(x.P(x);as); nil d ; a.b a |
Thm* T:Type, P:(T), as:T List, d:T. (first a as s.t. P(a) else d) T | |
filter | Def filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l) |
Thm* T:Type, P:(T), l:T List. filter(P;l) T List | |
reduce | Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive) |
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B | |
term_vars | Def term_vars(t) == iterate(statevar v- > [v] statevar v'- > [v] funsymbol f- > nil freevar f- > nil trace(P)- > nil x(y)- > x @ y over t) |
Thm* t:Term. term_vars(t) Label List | |
term_iter | Def iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a;b) over t) == term_iterate(x.v(x); x'.v'(x'); op.opr(op); f.fvar(f); tr.trace(tr); a,b. comb(a;b); t) |
Thm* A:Type, v,v',opr,fvar,trace:(LabelA), comb:(AAA), t:Term. iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a,b) over t) A | |
term_iterate | Def term_iterate(v;p;op;f;tr;a;t) == t_iterate(x.ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(c)= > op(c)fvar(d)= > f(d)trace(P)= > tr(P)end_ts_case ;a;t) |
Thm* A:Type, v,op,f,p,tr:(LabelA), a:(AAA), t:Term. term_iterate(v;p;op;f;tr;a;t) A | |
ts_case | Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = > |
Thm* A:Type, v,op,f,p,t:(LabelA), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A | |
t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A | |
case_default | Def Default = > body(value,value) == body |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
case | Def Case(value) body == body(value,value) |
eq_atom | Def x=yAtom == if x=yAtomtrue; false fi |
Thm* x,y:Atom. x=yAtom | |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
eq_int | Def i=j == if i=j true ; false fi |
Thm* i,j:. (i=j) | |
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
col | Def Collection(T) == TProp |
Thm* T:Type{i'}. Collection{i}(T) Type{i'} | |
tree_con | Def tree_con(E;T) == E+(TT) |
Thm* E,T:Type. tree_con(E;T) Type | |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
case_ts_trace | Def Case ts_trace(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_fvar | Def Case ts_fvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_op | Def Case ts_op(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_pvar | Def Case ts_pvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
zip | Def zip(as;bs) == Case of as; nil nil ; a.as' Case of bs; nil nil ; b.bs' [ < a,b > / zip(as';bs')] (recursive) |
Thm* T1,T2:Type, as:T1 List, bs:T2 List. zip(as;bs) (T1T2) List | |
map | Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive) |
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List | |
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List | |
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
Thm* T:Type, as,bs:T List. (as @ bs) T List | |
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
Thm* A:Type, l:A List. ||l|| | |
Thm* ||nil|| | |
nat | Def == {i:| 0i } |
Thm* Type | |
mk_rel | Def mk_rel(name, args) == < name,args > |
Thm* name:relname(), args:Term List. mk_rel(name, args) rel() | |
le | Def AB == B < A |
Thm* i,j:. (ij) Prop | |
tapp | Def t1 t2 == tree_node( < t1, t2 > ) |
Thm* t1,t2:Term. t1 t2 Term | |
not | Def A == A False |
Thm* A:Prop. (A) Prop | |
node | Def tree_node( < x, y > ) == tree_node( < x,y > ) |
Thm* E:Type, x,y:Tree(E). tree_node( < x, y > ) Tree(E) | |
ts_trace | Def ts_trace(x) == inr(inr(inr(inr(x)))) |
Thm* x:Label. ts_trace(x) ts() | |
ts_fvar | Def ts_fvar(x) == inr(inr(inr(inl(x)))) |
Thm* x:Label. ts_fvar(x) ts() | |
ts_op | Def ts_op(x) == inr(inr(inl(x))) |
Thm* x:Label. ts_op(x) ts() | |
ts_pvar | Def ts_pvar(x) == inr(inl(x)) |
Thm* x:Label. ts_pvar(x) ts() | |
lt_int | Def i < j == if i < j true ; false fi |
Thm* i,j:. (i < j) | |
tree_node | Def tree_node(x) == inr(x) |
Thm* E,T:Type, x:(TT). tree_node(x) tree_con(E;T) | |
Thm* E:Type, x,y:Tree(E). tree_node( < x,y > ) Tree(E) | |
case_ts_var | Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
Syntax: | VCs(A;I) | has structure: | ioa_inv_vc{i:l}(A; I) |
About: