| Who Cites sm a rename? |
|
sm_a_rename | Def (f o M) == mk_sm(M.da o f, M.ds, M.init, s1,a,s2. l:Label. kind(a) = f(l) & M.trans(s1, < l,value(a) > ,s2)) |
|
value | Def value(a) == 2of(a) |
| | Thm* d:Decl, a:( d). value(a) d(kind(a)) |
|
sm_trans | Def t.trans == 2of(2of(2of(t))) |
| | Thm* M:sm{i:l}(). M.trans M.state M.action M.state Prop |
|
kind | Def kind(a) == 1of(a) |
| | Thm* d:Decl, a:( d). kind(a) Label |
| | Thm* M:sm{i:l}(), a:M.action. kind(a) Label & kind(a) Pattern |
|
rename_decl | Def d o f(x) == y:Label. if x = f(y) d(y) else Top fi |
| | Thm* d:Decl, f:(Label Label). d o f Decl |
|
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
| | Thm* Label Type |
|
sm_init | Def t.init == 1of(2of(2of(t))) |
| | Thm* M:sm{i:l}(). M.init M.state Prop |
|
sm_ds | Def t.ds == 1of(2of(t)) |
| | Thm* t:sm{i:l}(). t.ds Decl |
|
sm_da | Def t.da == 1of(t) |
| | Thm* t:sm{i:l}(). t.da Decl |
|
mk_sm | Def mk_sm(da, ds, init, trans) == < da,ds,init,trans > |
| | Thm* da,ds:Decl, init:({ds} Prop), trans:({ds} ( da) {ds} Prop). mk_sm(da, ds, init, trans) sm{i:l}() |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x) ground_ptn(y) Default = > true (recursive) |
| | Thm* p:Pattern. ground_ptn(p)  |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
ptn | Def Pattern == rec(T.ptn_con(T)) |
| | Thm* Pattern Type |
|
top | Def Top == Void given Void |
| | Thm* Top Type |
|
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x= y Atom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x= y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x= y Atom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = u y = v Default = > false Default = > false (recursive) |
| | Thm* l1,l2:Pattern. l1 = l2  |
|
case_default | Def Default = > body(value,value) == body |
|
band | Def p q == if p q else false fi |
| | Thm* p,q: . (p q)  |
|
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
|
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case | Def Case(value) body == body(value,value) |
|
ptn_con | Def ptn_con(T) == Atom+ +Atom+(T T) |
| | Thm* T:Type. ptn_con(T) Type |
|
eq_atom | Def x= y Atom == if x=y Atom true ; false fi |
| | Thm* x,y:Atom. x= y Atom  |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | Thm* A:Type, l:A List. ||l|| 1  hd(l) A |
| | Thm* A:Type, l:A List . hd(l) A |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |
|
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
|
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |