Some definitions of interest. | |
hanoi_seq | Def == x,x':{a...z}. Def == x+1 = x' (k:{1...n}. Moving disk k of n takes s(x) to s(x')) |
Thm* s is a Hanoi(n disk) seq on a..z Prop | |
hanoi_PEG | |
hanoi_general_exists_lemma2PROG | Def == <s1(?) {to n-1} f {to n},s2(?) {to n-1} g {to n}> |
Thm* s1:({a...m}{1...n-1}Peg), s2:({m+1...z}{1...n-1}Peg). Thm* HanoiHelper(n; s1; f; s2; g) Thm* ({a...m}{1...n}Peg)({m+1...z}{1...n}Peg) | |
hanoi_seq_deepen | |
Thm* nn' Thm* Thm* (h:({n+1...n'}Peg). (s(?) {to n} h {to n'}) {a...z}{1...n'}Peg) | |
hanoi_seq_join | |
Thm* (s1 @(m) s2) {a...z}{1...n}Peg | |
int_iseg | |
int_upper | |
nat_plus | |
nequal | |
About: