| Some definitions of interest. |
|
hanoi_PEG | Def Peg == {1...3} |
| | Thm* Peg Type |
|
hanoi_sol2_ala_generalPROG | Def HanoiSTD(n disks; from: p; to: q; indexing from: a)
Def == if n= 0 <a, x,i. whatever>
Def == else HanoiSTD(n-1 disks; from: p; to: otherPeg(p; q); indexing from: a)
Def == else /m,s1.
Def == else HanoiSTD(n-1 disks; from: otherPeg(p; q); to: q; indexing from: m
Def == else HanoiSTD(+1)
Def == else /z,s2. <z,HanoiHelper(n; s1; i.p; s2; i.q)/r1,r2. r1 @(m) r2> fi
Def (recursive) |
| | Thm* n: , p,q:Peg.
Thm* p q
Thm* 
Thm* ( a: .
Thm* (HanoiSTD(n disks; from: p; to: q; indexing from: a)
Thm* ( z:{a...} ({a...z} {1...n} Peg)) |
|
hanoi_general_exists_lemma2PROG | Def HanoiHelper(n; s1; f; s2; g)
Def == <s1(?) {to n-1} f {to n},s2(?) {to n-1} g {to n}> |
| | Thm* n: , a: , z:{a...}, m:{a...z-1}, f,g:({1...n} Peg),
Thm* s1:({a...m} {1...n-1} Peg), s2:({m+1...z} {1...n-1} Peg).
Thm* HanoiHelper(n; s1; f; s2; g)
Thm* ({a...m} {1...n} Peg) ({m+1...z} {1...n} Peg) |
|
hanoi_otherpeg | Def otherPeg(x; y) == 6-(x+y) |
| | Thm* x,y:Peg. x y  otherPeg(x; y) Peg |
|
hanoi_seq_join | Def (s1 @(m) s2)(x) == if x m s1(x) else s2(x) fi |
| | Thm* n: , m,a,z: , s1:({a...m} {1...n} Peg), s2:({m+1...z} {1...n} Peg).
Thm* (s1 @(m) s2) {a...z} {1...n} Peg |
|
int_iseg | Def {i...j} == {k: | i k & k j } |
| | Thm* i,j: . {i...j} Type |
|
int_upper | Def {i...} == {j: | i j } |
| | Thm* n: . {n...} Type |
|
nat_plus | Def  == {i: | 0<i } |
| | Thm*  Type |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |