| Some definitions of interest. |
|
exponentiation | Def n^k == if k= 0 1 else n (n^(k-1)) fi (recursive) |
| | Thm* n: , k: . (n^k)  |
| | Thm* n,k: . (n^k)  |
| | Thm* n: , k: . (n^k)   |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
nat_plus | Def  == {i: | 0<i } |
| | Thm*  Type |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |