IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
hanoi general exists lemma2PROGworks11 1. n : 2. a : 3. z : {a...}
4. m : {a...z-1}
5. f : {1...n}Peg
6. g : {1...n}Peg
7. f(n) g(n)
8. s1 : {a...m}{1...n-1}Peg
9. s2 : {m+1...z}{1...n-1}Peg
10. s1 is a Hanoi(n-1 disk) seq on a..m 11. s1(a) = f 12. s2 is a Hanoi(n-1 disk) seq on m+1..z 13. s2(z) = g 14. s1(m) = s2(m+1)
15. i:{1...n-1}. s1(m,i) f(n) & s2(m+1,i) g(n)
((s1(?) {to n-1} f {to n}) @(m) (s2(?) {to n-1} g {to n}))
is a Hanoi(n disk) seq on a..z
By:
BackThru:
Thm*n:, a,z:, m:{a...z-1}, s1:({a...m}{1...n}Peg),
Thm* s2:({m+1...z}{1...n}Peg).
Thm* (k:{1...n}. Moving disk k of n takes s1(m) to s2(m+1))
Thm* Thm* s1 is a Hanoi(n disk) seq on a..m Thm* Thm* s2 is a Hanoi(n disk) seq on m+1..z Thm* Thm* (s1 @(m) s2) is a Hanoi(n disk) seq on a..z