LogicSupplement Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  P  Q == (P  Q) & (P  Q)

is mentioned by

Thm*  (x:Ay:BQ(x,y))  (f:(AB). x:AQ(x,f(x)))[ax_choice_version3]
Thm*  f,g:(AB). f = g  (x:Af(x) = g(x))[indep_fun_extensional]
Thm*  (!A (!x:A. True)[inhabited_uniquely_vs_exists_unique]
Thm*  P:(AType). (x:A. Dec(P(x)))  (!{p:(A)| x:Ap(x P(x) })[dec_pred_imp_bool_decider_exists]
Thm*  (x:T. Dec(E(x)))  (f:(T). x:Tf(x E(x))[dec_pred_iff_some_boolfun]
Thm*  R:(AAProp). 
Thm*  (EquivRel x,y:AR(x,y))
Thm*  
Thm*  (x:AR(x,x) & (y:AR(x,y R(y,x) & (z:AR(y,z R(x,z))))
[equivrel_characterization]
Thm*  (Set:Type, :(SetSetProp).
Thm*  (P:(SetProp). p:Setx:Set. (x  p P(x))
[RussellsParadox_Frege2]
Thm*  (A:Type, Q:(AAProp). P:(AProp). p:Ax:AQ(x,p P(x))[RussellsParadox_Frege]
Thm*  (P  P)[no_prop_iff_its_neg]
Thm*  (A Discrete)  (e:(AA). IsEqFun(A;e))[discrete_vs_bool2]
Thm*  (A Discrete)  (e:(AA). x,y:A. (x e y x = y)[discrete_vs_bool]
Thm*  (x:AB(x B'(x))  ({x:AB(x) } =ext {x:AB'(x) })[subset_sq_exteq]
Thm*  (x:AB(x B'(x))  ({x:AB(x) } =ext {x:AB'(x) })[subset_exteq]
Thm*  P XOR Q  (Q  P) & Dec(P)[xor_vs_neg_n_dec]
Thm*  P  P[sq_sq_iff_sq]
Thm*  (P P[sq_not_iff_sq]
Thm*  P  P[not_sq_iff_sq]
Thm*  (!A (x:Ay:Ax = y)[inhabited_uniquely_vs_exists]
Thm*  (A (x:A. True)[inhabited_vs_exists]
Thm*  F:(PropProp). (P:Prop. F(P))  (A:Type. F(A))[inhab_rep_eqv]
Thm*  (x:AB(x))  ((x:AB(x)))[inhab_choice]
Thm*  Dec(P (b:b  P)[decbl_iff_some_bool]
Thm*  Q  Q  Q[or_fused]
Thm*  (P:Prop. P  P (P:Prop. P  P)[negnegelim_vs_bivalence]

In prior sections: core well fnd int 1 bool 1 rel 1 quot 1

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

LogicSupplement Sections DiscrMathExt Doc