(3steps total)
PrintForm
Definitions
Lemmas
LogicSupplement
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
discrete
vs
bool
1
1.
A
: Type
(
A
Discrete)
(
e
:(
A
A
).
x
,
y
:
A
. (
x
e
y
)
x
=
y
)
By:
Use:[
A
|
x
,
y
.
x
=
y
A
]
Inst:
Thm*
E
:(
T
T
Prop).
Thm*
(
x
,
y
:
T
. Dec(
E
(
x
,
y
)))
(
f
:(
T
T
).
x
,
y
:
T
. (
x
f
y
)
E
(
x
,
y
))
THEN
ReduceSOAps Hyp:-1
Generated subgoal:
1
2. (
x
,
y
:
A
. Dec(
x
=
y
))
(
f
:(
A
A
).
x
,
y
:
A
. (
x
f
y
)
x
=
y
)
(
A
Discrete)
(
e
:(
A
A
).
x
,
y
:
A
. (
x
e
y
)
x
=
y
)
1
step
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(3steps total)
PrintForm
Definitions
Lemmas
LogicSupplement
Sections
DiscrMathExt
Doc