Thms action sets Sections AutomataTheory Doc

lpower Def (Ln) == if n=0 nil else (Ln-1) @ L fi (recursive)

Thm* Alph:Type, L:Alph*, n:. (Ln) Alph*

nat Def == {i:| 0i }

Thm* Type

append Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)

Thm* T:Type, as,bs:T*. (as @ bs) T*

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberless_thanint
int_eqbtruebfalseboolrecursive_def_noticelist_indconsuniverse
listsetnatural_numberifthenelsenilsubtract