Thms action sets Sections AutomataTheory Doc

n0n1 Def n0n1(n) == ([0]n) @ ([1]n)

Thm* n:. n0n1(n) *

lpower Def (Ln) == if n=0 nil else (Ln-1) @ L fi (recursive)

Thm* Alph:Type, L:Alph*, n:. (Ln) Alph*

append Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)

Thm* T:Type, as,bs:T*. (as @ bs) T*

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

About:
!abstractionint_eqbtruebfalseallint
memberboolrecursive_def_noticelist_indconsuniverse
listifthenelsenatural_numbernilsubtract