PrintForm Definitions action sets Sections AutomataTheory Doc

At: pump theorem 1 1 1 1 1 1 1 1 1 1 1 1 2 1

1. Alph: Type
2. S: ActionSet(Alph)
3. N:
4. s: S.car
5. f: S.carN
6. g:(NS.car). InvFuns(S.car; N; f; g)
7. A: Alph*
8. N < ||A||
9. i: ||A||
10. j: ||A||
11. i < j
12. (i.f((S:A[||A||-i..||A||]s)))(i) = (i.f((S:A[||A||-i..||A||]s)))(j) N

A = (A[0..||A||])

By:
InvertRel 0
THEN
BackThru Thm* as:T*. (as[0..||as||]) = as


Generated subgoals:

None


About:
equallistnatural_numberuniversefunction
existsless_thanapplylambdasubtract