PrintForm Definitions action sets Sections AutomataTheory Doc

At: pump theorem 1 1 1 1 1 1 1 1 1 1 1 1 2

1. Alph: Type
2. S: ActionSet(Alph)
3. N:
4. s: S.car
5. f: S.carN
6. g:(NS.car). InvFuns(S.car; N; f; g)
7. A: Alph*
8. N < ||A||
9. i: ||A||
10. j: ||A||
11. i < j
12. (i.f((S:A[||A||-i..||A||]s)))(i) = (i.f((S:A[||A||-i..||A||]s)))(j) N

A = (((A[0..||A||-j]) @ (A[||A||-j..||A||-i])) @ (A[||A||-i..||A||]))

By: RW (SweepUpC (LemmaC Thm* as:T*, i:{0...||as||}, j:{i...||as||}, k:{j...||as||}. ((as[i..j]) @ (as[j..k])) = (as[i..k]))) 0

Generated subgoal:

1 A = (A[0..||A||])


About:
equallistnatural_numbersubtractuniverse
functionexistsless_thanapplylambda