At: pump theorem 1 1 1 1 1 1 1 1 1 1 1 1 2
1. Alph: Type
2. S: ActionSet(Alph)
3. N: 

4. s: S.car
5. f: S.car

N
6.
g:(
N
S.car). InvFuns(S.car;
N; f; g)
7. A: Alph*
8. N < ||A||
9. i:
||A||
10. j:
||A||
11. i < j
12. (
i.f((S:A[||A||-i..||A||
]
s)))(i) = (
i.f((S:A[||A||-i..||A||
]
s)))(j)
N
A = (((A[0..||A||-j
]) @ (A[||A||-j..||A||-i
])) @ (A[||A||-i..||A||
]))
By: RW
(SweepUpC
(LemmaC
Thm*
as:T*, i:{0...||as||}, j:{i...||as||}, k:{j...||as||}.
((as[i..j
]) @ (as[j..k
])) = (as[i..k
])))
0
Generated subgoal:| 1 | A = (A[0..||A|| ]) |
About: